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Dispersion measurements of water with spectral
interferometry
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The spectral relative phase is directly derived from the spectrally resolved interferogram by the Fourier
transform method. Furthermore, the spectral absolute phase can also be found. The spectral absolute
phase is used to measure the refractive index. In addition, the group index and the derivatives of the
refractive index with respect to the wavelength are given through the polynomial fitting process. The
measured results are compared with the published data and the new measurement results of the water are
given for the wavelength larger than 1.3 µm.

OCIS codes: 120.3180, 260.2030, 010.7340, 120.5050.
doi: 10.3788/COL20090706.0486.

The optical dispersion of media is an important param-
eter in understanding and controlling the femtosecond
pulse propagation[1]. Water is an inevitable propagation
medium in atmosphere and ocean, as well as in bio-
logical tissues. Femtosecond pulses can be broadened
and split by dispersion with nonlinear self-focusing and
diffraction[2]. The broadened pulses have much to do with
the peak power density in laser eye surgery. Interferome-
try has been applied to measure the refractive index and
dispersion in spectral domain and time domain[3−13]. In
time domain, the optical path in one arm of the interfer-
ometer is varied continuously with the optical delay line
or the movement of the reflective mirror when recording
the interference signal. The group delay can be measured
by evaluating the shift of cross-correlation peak of the
interferogram with the variation of wavelength, or by a
Fourier transform of the cross-correlation interferogram,
the spectral phase delay can be obtained. However, it
is difficult for us to determine the zero-delay point that
serves as a time reference, and the derived phase is a
relative value and needs to be unwrapped[14]. In spec-
tral domain, the optical path difference (OPD) between
two arms of the interferometer is fixed while the inter-
ference signal is spectrally resolved by a spectrometer.
The group index can be obtained directly from the lo-
cal fringes’ periodicity at the stationary phase point, the
dispersion of the group refractive index can be acquired
through the equalization wavelength as well. Alterna-
tively, the spectral phase can be derived directly from
the spectrally resolved interferogram by the rule that the
phase at a fringe peak is equal to an integer multiple of
π[9,11]. However, the interferogram cannot be spectrally
resolved when the OPD far from the stationary phase
point becomes too large[10].

In this letter, the Fourier transform method[15] is used
to analyze the spectrally resolved interferogram, and the
spectral relative phase is directly derived from the first
order spectrum of the Fourier transformed interferogram.
Compared with the phase retrieval methods in Refs. [9]
and [11], the Fourier transform method is simple and

easy. In addition, the spectral absolute phase can be ac-
quired by the sampling theory in combination with the
spectral relative phase, which is different from the way
the absolute phase is obtained[9]. The spectral absolute
phase can be used to measure the refractive index. Fur-
thermore, the group index and the derivatives of the re-
fractive index with respect to the wavelength λ are given
through the polynomial fitting process.

The experimental schematic illustration is shown in
Fig. 1, which is a Michelson interferometer with a su-
perluminescent light emitting diode (SLED) broadband
light source, whose nominal central wavelength λc =
1316 nm and bandwidth ∆λ = 65 nm. After being col-
limated through a lens L1, the broadband light is split
into two beams by a beam splitter (BS). The two beams
pass through a pair of quartz glass cells and are reflected
back from mirrors M1 and M2, the interference signal is
coupled into a spectrometer by a fiber. In order to cancel
out the effect of the wall of the glass cell, one of the pair
of the same quartz glass cells is empty while another has
a sample inside.

The recorded interferogram can be written as

I(ν) = I0(ν){1 + r(ν)2 + 2r(ν)cos[φ(ν)]}, (1)

where ν is defined as 1/λ, λ is the wavelength, I0(ν) is
the light source spectral distribution, r(ν) is the ratio of

Fig. 1. Experimental schematic illustration. BLS: broadband
light source; F1, F2: fibers; L1, L2, L3, L4: lenses; M1, M2:
mirrors.
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the amplitudes of the two superposed interference beams,
and the phase φ(ν) can be given as

φ(ν) = 2πν{2d[n(ν)− 1] + 2L}, (2)

here d is the thickness of the quartz glass cell, L is the
extra OPD between the two arms of the interferometer
by moving the reflective mirror in one arm away from the
zero OPD position without the sample, n(ν) is the phase
refractive index of the sample. By Fourier transforming
two sides, Eq. (1) can be further written as

F [I(ν)] = F [I0(ν)]⊗ {[1 + r(ν)2]δ(s)
+C[s− 2(L− d)] + C∗[s + 2(L− d)]}, (3)

where C expresses the Fourier transform of
r(ν)exp[j4πνdn(ν)], F expresses the Fourier transform,
⊗ stands for convolution.

The positive first-order Fourier spectrum of Eq. (3)
is inversely Fourier transformed to give the phase and
amplitude as

c1 = I0(ν)r(ν)exp[jφ(ν)], (4)

where c1 represents the result by inversely Fourier trans-
forming the positive first-order Fourier spectrum.

The phase value φ(ν) in Eq. (2) can be expanded in a
Taylor series about ν = ν0 as

φ(ν) = 4πν0dn(ν0) + 4πν0(L− d) +
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And the obtained phase value φ(ν) from Eq. (4), by the
polynomial fitting process, could be written as

φ(ν) = φ0 + φ1(ν − ν0) + φ2(ν − ν0)2

+φ3(ν − ν0)3 + · · · . (6)

The fitting coefficients at different wavelengths can be ob-
tained with the variation of ν0. We can get the refractive
index and the group index of the sample by comparing
the coefficients in Eq. (5) and (6) if the values L and d
are known. However, the phase φ(ν) in Eq. (6) is relative
but not absolute because of a multiple of 2π, while the
phase φ(ν) in Eq. (5) is absolute. The absolute phase at
certain wavelength is firstly obtained and then the abso-
lute phase for the full wavelength range can be derived
from the relative phase values. The distance between the
zeroth and the first order spectra in Fourier domain can
be expressed as

S = dn0 + L− d, (7)

where n0 represents the refractive index at the central fre-
quency νc in correspondence with the central sampling
point of Fourier transform. According to the sampling
theory, the sampling space is given as

ds =
1

2∆ν
, (8)

where ∆ν = 1/λmin − 1/λmax, λmin and λmax stand
for the minimum and maximum detected wavelengths,
respectively. From Eq. (2), the absolute phase at νc

can be got, so the absolute phase for the full wavelength
range could be written as

φa(ν) = φ(ν)− φ(νc) + 4πνcS. (9)

If any two variables of L, d, and n0 are known, the third
one can be solved from Eq. (7). Then the refractive in-
dex and the group index can be acquired from Eqs. (5)
and (9).

In our experiment, there are not enough known vari-
ables of L, d, and n0, but we still have

d2φ(ν)
dν2

= 4πdλ3 d2n

dλ2
,

d3φ(ν)
dν3

= −4πd

(
3λ4 d2n

dλ2
+ λ5 d3n

dλ3

)
. (10)

Substituting Eq. (6) into Eq. (10), we can solve d2n/dλ2

and d3n/dλ3. Besides, d2k/dω2 and d3k/dω3 can be de-
rived from d2n/dλ2 and d3n/dλ3 in the form of Eqs. (8)
and (9) in Ref. [8].

The recorded spectrally resolved interferogram of the
distilled water is shown in Fig. 2(a), whose Fourier
transform is shown in Fig. 2(b). In our experiment, the
nominal thickness of the quartz glass cell d = 1 mm,
the central frequency νc is located at λc = 1.3288 µ
m, the minimum wavelength λmin = 1.2288 µm, the
maximum wavelength λmax = 1.4288 µm, the actual res-
olution of the spectrometer is 0.94 nm, and the sampling

Fig. 2. (a) Spectrally resolved interferogram and (b) its
Fourier transform.
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space ds = 4.3893 µm from Eq. (8). The mean dis-
tance from five interferograms S = −0.395±0.002 mm,
whose precision is determined by the sampling space.
Then the absolute phase can be obtained from Eq. (9)
with a precision of ±6.6π, the measured refractive index
should have the error of ±0.002 from Eqs. (7) and (5).
According to Eq. (12) in Ref. [8], the refractive index
at the central wavelength n0 = 1.32007, the value of L
could be found from Eq. (7). Then the refractive index is
derived from the absolute phase, as shown in Fig. 3(d).
The measured refractive index agrees with that in Ref.
[8] within the error range of ±0.002. Because the calcu-
lated values are extrapolated from the valid wavelengths
in Eq. (12) of Ref. [8], the variation trend of refractive
index with wavelength cannot be certainly right. The
measured group index in Fig. 3(b) shows a systematic
error in comparison with the result from Eq. (12) of
Ref. [8]. The values of d2n/dλ2 and d3n/dλ3 can be
measured from the spectral relative phase from Eq. (10).
The measured values of d2n/dλ2 of the distilled water
are given in Fig. 3(c). Our measured values of d2n/dλ2

at 1.3 and 1.25 µm are respectively −0.028±0.004 µm−2

and −0.02 ± 0.03 µm−2, both agree well with the pub-
lished data[8]. The measured values of d3n/dλ3 are given
with large standard errors as shown in Fig. 3(a). The
new measured results of d2n/dλ2 and d3n/dλ3 are given
for the wavelength larger than 1.3 µm.

The main errors come from the thickness d, the sam-
pling space ds, the fitting process, the spectral relative
phase, and Eq. (12) in Ref. [8]. We can also see from
Figs. 3(b) and (c) that the larger the standard er-
ror of the mean, the farther away from the zero OPD
position because of the denser interference fringe and
the lower fringe visibility. Another factor which maybe
influences the measurement is the parasitic interference,

Fig. 3. (a) Measured third derivative of the refractive in-
dex d3n/dλ3; (b) comparison between the measured group
index and the calculated values from Eq. (12) in Ref. [8]; (c)
measured second derivative of refractive index d2n/dλ2; (d)
comparison between the measured refractive index and the
calculated values from Eq. (12) in Ref. [8].

which can be seen in Figs. 2(a) and (b), for the spectral
distribution of the light source is nearly Gaussian. In
addition, the refractive index and the group index from
Eq. (12) of Ref. [8] are extrapolated to the wavelength
range of the experiment, which should be noticed. For
example, there is a dramatic difference between the mea-
sured values of d2n/dλ2 and the calculated values from
Eq. (12) in Ref. [8].

In conclusion, the spectral relative phase can be de-
rived directly from the first-order spectrum of the Fourier
transform of the spectrally resolved interferogram. The
distance between the zeroth and first order spectra of
the Fourier transform could be found from the sampling
theory. Furthermore, the spectral absolute phase can
be acquired from the distance and the spectral relative
phase. The absolute phase can be used to solve the re-
fractive index and the group index if we know any two
variables of the sample thickness d, the extra OPD, and
the refractive index n0 at the central frequency of νc.
The measured values of d2n/dλ2 agree well with the
published data and the new measured values of d2n/dλ2

and d3n/dλ3 are given for the wavelength larger than
1.3 µm.
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